Portrait of Félix Therrien

Félix Therrien

Applied Machine Learning Scientist, Applied Machine Learning Research

Publications

Catalyst GFlowNet for electrocatalyst design: A hydrogen evolution reaction case study
Efficient and inexpensive energy storage is essential for accelerating the adoption of renewable energy and ensuring a stable supply, despit… (see more)e fluctuations in sources such as wind and solar. Electrocatalysts play a key role in hydrogen energy storage (HES), allowing the energy to be stored as hydrogen. However, the development of affordable and high-performance catalysts for this process remains a significant challenge. We introduce Catalyst GFlowNet, a generative model that leverages machine learning-based predictors of formation and adsorption energy to design crystal surfaces that act as efficient catalysts. We demonstrate the performance of the model through a proof-of-concept application to the hydrogen evolution reaction, a key reaction in HES, for which we successfully identified platinum as the most efficient known catalyst. In future work, we aim to extend this approach to the oxygen evolution reaction, where current optimal catalysts are expensive metal oxides, and open the search space to discover new materials. This generative modeling framework offers a promising pathway for accelerating the search for novel and efficient catalysts.
A physics-based data-driven model for CO$_2$ gas diffusion electrodes to drive automated laboratories
Abhishek Soni
Karry Ocean
Kevan Dettelbach
Ribwar Ahmadi
Mehrdad Mokhtari
Curtis P. Berlinguette
The electrochemical reduction of atmospheric CO…
OBELiX: A Curated Dataset of Crystal Structures and Experimentally Measured Ionic Conductivities for Lithium Solid-State Electrolytes
Rhiannon Hendley
Sun Sun
Alain Tchagang
Jiang Su
Samuel Huberman
Hongyu Guo
Homin Shin
Solid-state electrolyte batteries are expected to replace liquid electrolyte lithium-ion batteries in the near future thanks to their higher… (see more) theoretical energy density and improved safety. However, their adoption is currently hindered by their lower effective ionic conductivity, a quantity that governs charge and discharge rates. Identifying highly ion-conductive materials using conventional theoretical calculations and experimental validation is both time-consuming and resource-intensive. While machine learning holds the promise to expedite this process, relevant ionic conductivity and structural data is scarce. Here, we present OBELiX, a domain-expert-curated database of
OBELiX: A Curated Dataset of Crystal Structures and Experimentally Measured Ionic Conductivities for Lithium Solid-State Electrolytes
F'elix Therrien
Rhiannon Hendley
Alex Hern'andez-Garc'ia
Sun Sun
Alain Tchagang
Jiang Su
Samuel Huberman
Hongyu Guo
Homin Shin
Solid-state electrolyte batteries are expected to replace liquid electrolyte lithium-ion batteries in the near future thanks to their higher… (see more) theoretical energy density and improved safety. However, their adoption is currently hindered by their lower effective ionic conductivity, a quantity that governs charge and discharge rates. Identifying highly ion-conductive materials using conventional theoretical calculations and experimental validation is both time-consuming and resource-intensive. While machine learning holds the promise to expedite this process, relevant ionic conductivity and structural data is scarce. Here, we present OBELiX, a domain-expert-curated database of
A physics-based data-driven model for CO$_2$ gas diffusion electrodes to drive automated laboratories
F'elix Therrien
Abhishek Soni
Karry Ocean
Kevan Dettelbach
Ribwar Ahmadi
Mehrdad Mokhtari
C. Berlinguette
The electrochemical reduction of atmospheric CO…